Пока SpaceX готовится использовать свою ракету Starship для колонизации Марса, ученые рассматривают более широкий спектр потенциальных мест обитания за пределами Солнечной системы. В нашей галактике Млечный Путь насчитывается десятки миллиардов каменистых планет в обитаемой зоне своих звезд, большинство из которых представляют собой красные карлики – звезды с массой около одной десятой массы Солнца.
Недавнее исследование экзопланет показало, что хотя некоторые из них имеют скорость убегания (скорость, которую необходимо придать стартующему с поверхности небесного тела объекту, масса которого пренебрежимо мала по сравнению с массой небесного тела, для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него) ниже, чем у Земли, другие обладают более высокими барьерами для выхода в открытый космос. Рассмотрим конкретный пример – систему TRAPPIST-1, находящуюся в 40,7 световых годах от Солнца.
TRAPPIST-1 – это красный карлик, вокруг которого вращаются семь транзитных планет радиусами от 0,7 до 1,13 радиуса Земли. Одна из этих каменистых планет, TRAPPIST-1d, имеет вторую космическую скорость (скорость убегания) 7,86 км/с, что составляет около 70% от земного значения 11,2 км/с. Поток звездного излучения, падающий на поверхность TRAPPIST-1d, аналогичен солнечному потоку на Земле, что может обеспечить сходную равновесную температуру при подобных альбедо планет.
Если на TRAPPIST-1d смогла зародиться технологическая цивилизация, то ее космическая программа столкнулась бы с более легкой задачей покинуть планету по сравнению с аналогичными усилиями, необходимыми для Starship на Земле – достаточно было бы ракеты с вдвое меньшей кинетической энергией. Такие ракеты могли бы обеспечить эффективную транспортную систему между семью планетами системы TRAPPIST-1, орбиты которых плотно сгруппированы на расстояниях от 1,1% до 5,9% орбиты Земли с периодами обращения от 1,5 до 19 дней.
Год на TRAPPIST-1d длится всего 4,05 дня. Несмотря на то, что звезда TRAPPIST-1 в 8,3 раза меньше Солнца по размеру, из-за близости планеты она выглядит на ее небе в 5,5 раз больше, чем Солнце с Земли. TRAPPIST-1 обладает 9% солнечной массы и 12% солнечного радиуса, что делает ее в 52 раза плотнее Солнца. Ее поверхностная температура составляет 2516 К (43,5% солнечной), а светимость – всего 0,05% солнечной. Однако, поскольку она расходует ядерное топливо медленнее, срок ее жизни может достигать 7 триллионов лет – в 600 раз больше, чем у Солнца.
Хотя покинуть обитаемую TRAPPIST-1d легче, чем Землю, достичь межзвездного пространства с ее орбиты гораздо сложнее. Дело в том, что TRAPPIST-1d находится в 45 раз ближе к своей звезде, чем Земля к Солнцу. В результате скорость убегания с орбитального радиуса TRAPPIST-1d в межзвездное пространство составляет 85 км/с – вдвое больше, чем для Земных аппаратов.
В 1903 году русский ученый Константин Циолковский вывел зависимость массы топлива, необходимого для разгона ракеты до заданной конечной скорости, показав, что эта масса растет экспоненциально с увеличением скорости. Для жидкого кислорода/метана, используемого на Starship со скоростью выхлопа 3,21 км/с (что эквивалентно удельному импульсу 327 секунд), масса топлива, требуемая для достижения второй космической скорости с орбиты TRAPPIST-1d, примерно в миллион раз больше, чем для Земли.
Иными словами, технологической цивилизации на TRAPPIST-1d потребовалось бы в миллион раз больше топлива, чем то, что мы использовали для запуска наших пяти межзвездных зондов: Вояджеров 1 и 2, Пионеров 10 и 11 и Новых Горизонтов. Так что нам следует быть благодарными за ту случайную удачу, что параметры Солнца и Земли позволили нам иметь межзвездную программу на основе химических ракет.
Наши межзвездные зонды перестанут существовать и превратятся в космический мусор, как только покинут внешнюю границу облака Оорта и выйдут в межзвездное пространство примерно через 10 000 лет. Упомянутые выше цифры говорят о том, что если мы и найдем на нашем космическом заднем дворе остатки инопланетных химических ракет, то они будут принадлежать цивилизациям, родившимся возле звезд, подобных Солнцу, а не красных карликов.
Учитывая глубину их гравитационной ямы, разумные инопланетные расы около красных карликов могут использовать альтернативные средства передвижения, такие как световые паруса, ядерные двигатели или новые орбиты с гравитационной поддержкой.
Читайте также: Термоядерная ракета, разгоняющаяся до 800 000 км в час